

WORLD CLASS AVIATION LABORATORY ANALYSIS

SPEC

SPECTRO® JET-CARE®

spectro-oil.com | jet-care.com

ROUTINE ANALYSIS AND TRENDING GIVE AN ACCURATE INSIGHT INTO POTENTIAL PERFORMANCE AND RELIABILITY ISSUES.

At the forefront of condition monitoring services for aircraft around the world, Spectro | Jet-Care are privately owned, independent laboratories based in the UK, Switzerland and USA, providing high quality analysis services to the global aviation industry. With accreditations from all major engine and airframe manufacturers, our services are trusted worldwide.

LABORATORY ANALYSIS

Fluid and debris analysis is a central part of maintenance schedules. With comprehensive test suites and quality analysis, plus a carefully tailored approach to each customer, we can provide valuable information and guidance to help you plan maintenance and reduce unscheduled downtime.

QUALITY

Our unrivalled expertise, quality control and integrity are supported by industry recognised accreditation that ensures each of our laboratories maintains the same exacting high standards. UKAS (United Kingdom Accreditation Service) and SAS (Swiss Accreditation Service) verify that our laboratories comply with ISO/IEC 17025:2017, the testing and calibration laboratory standard.

MEMBERSHIPS

ANALYSIS OFFERING

Analysis is performed from samples taken from the equipment, using easy to use sample kits.

OIL ANALYSIS

Oil analysis is a key tool for equipment condition monitoring and can identify early indications of problems within engines, APUs, gearboxes and other vital pieces of equipment so you can take appropriate action. Our extensive range of tests includes ICP Spectrometry, Viscosity, Total Acid Number, Water, RULER and Particle Quantifier.

HYDRAULIC FLUID ANALYSIS

Keeping your critical control systems and supply vehicles in perfect condition is vital for safety and efficiency. With regular testing of hydraulic fluid you will get a clearer picture of system cleanliness and performance. Our range of tests includes Particle Count, Water, Viscosity, Total Acid Number, ICP Spectrometry, Chlorine and Specific Gravity.

DEBRIS & FILTER ANALYSIS

We use the analytical capabilities of Scanning Electron Microscopes (SEM), and powerful optical

microscopes, for the in-depth examination of debris. Particles can be found within filters, on magnetic chip detectors or during routine visual inspection of fluid test samples. Taking into account the type, form, quantity, size and condition of the particles enables us to make recommendations on the likely source of the debris.

FUEL ANALYSIS

Periodic monitoring of fuel tanks and that fuel cleanliness is maintained bacteria and viable fungal spores

AVIATION SAMPLE KITS

We supply a range of kits to help you prepare and deliver oil, hydraulic fluid, fuel, debris and filter samples for analysis. Click here to view our list of kits available including Spectrometric Oil Analysis Program kits for engines and Auxiliary Power Units.

WHY USE webECHO

View your data, statistics and/or PDF reports for:

- Oil, Hydraulic Fluid and Fuel Analysis
- Debris and Filter Analysis by Scanning Electron Microscope.
- Jet-Care Engine Trending by Gas Path Analysis (GPA)
- Filter data by alert level, analysis type or any other searchable parameter.
- Review online trends and analysis of your equipment.

webECHO™

webECHO is a versatile online resource available 24/7/365 to manage your equipment, fleet data and access your latest reports and trends through a single portal. The integrated system allows you to download reports, view graphs, read the advice dialogue and analyse data in real time. Bespoke KPI's are easily produced according to customers requirements.

webECHO can also run on a variety of mobile devices such as iPads® and Android[™] tablets. webECHO is available at no extra charge as part of our support service and is a convenient and user-friendly way to manage your analysis results and trend monitoring.

- Download reports, view graphs and analyse data in real time.
- Review and request changes to the information held on your organisation - locations, operators, equipment, reporting and test suites.
- View the last 50 data points used for analysis in tabular format for quick numerical comparison.

REPORTING & TECHNICAL SUPPORT

Within two working days your results are reported either by email or can be accessed through our online portal, webECHO[™]. The analysis reports are provided in PDF format and show the equipment history as well as a colour coded system - Green – Normal, Yellow - Early Warning or Red - Advanced, which indicate whether the result requires action. The results can be discussed further with our technical team, who not only understand laboratory analysis but aviation equipment and operation.

For the Attention of Telephone Laboratory Report Receipt Date Sample Date §	of Reference Date	13-Jan-22 12-Jan-22 30-Dec-21	Purch	nase/Works (Order #§	Equipment Registratio Position § Description Manufactu Model § Serial Num Customer I Unique Co Oil Grade § Unit Life § Oil/Fluid Life	Information n§ rer§ ber§ teference§ de fe§	SAFRAN ARRIEL	N HELICOPTE -1E2	RENGINES	NORM	AAL
webE	СН	C™ st	art using we ontact us at v	bECHO toda	y to access, r spectro-oil.co	manage and om to find ou	review your It more.	results all in	one place.			4
Sample Number			7	8	9	10	11	12	13	14	15	16
Analysis Date			26-Aug-20	22-Sep-20	20-Oct-20	19-Nov-20	23-Apr-21	06-May-21	17-Jun-21	23-Aug-21	14-Oct-21	13-Jan-22
Sample Date §			13-Aug-20	18-Sep-20	16-Oct-20	16-Nov-20	16-Apr-21	30-Apr-21	10-Jun-21	18-Aug-21	01-Oct-21	30-Dec-21
Lab Reference			AV124783	AV125250	AV125618	AV126034	AV128141	AV128316	AV128893	AV129886	AV130717	AV132057
Unit Life §			5363:30	-	564:00	5615:18	5720:58	5804:33	5883:33	5980:58	6068:08	6158:23
Oil/Fluid Life §	_			466:00	564:00	635:55	-	183:40		360:05		537:30
Oil/Fluid Added §			-	-	-	-	-	-	-	-	-	•
Ticket Number §		_		-	-	-	-		-	SPAV011611	SPAV006846	SPAV008371
iysical Condition	0.40077	ma (f0)) (0.18	0.17	0.07	0.18	0.13	0.13	0.15	0.17	0.17	0.19
IAN	(M007)	rng KOH/g	25.5	25.8	25.9	25.6	25.8	25.2	25.8	25.6	25.6	25.7
viscosity at 40°C	(1002)	cos i minz/s	23.3	23.0	23.5	23.0	23.0	23.2	23.0	23.0	23.0	a.J./
pectrographic Analysi	is											
Iron	(M019)	ppm	1.4	1.2	1.0	0.9	0.4	0.4	0.4	0.4	0.3	0.3
Aluminium	(M019)	ppm	0.3	0.2	0.2	0.1	0.1	<0.1	0.1	0.1	<0.1	0.1
Chromium	(M019)	ppm	0.2	0.2	0.1	0.1	0.2	0.1	0.1	<0.1	0.1	0.1
Molybdenum	(M019)	ppm	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Copper	(M019)	ppm	0.3	0.2	0.2	0.2	0.2	0.1	0.2	<0.1	0.1	0.1
Lead	(M019)	ppm	0.3	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Tin	(M019)	ppm	0.5	0.4	0.5	0.3	0.2	0.3	0.1	<0.1	0.1	0.1
Nickel	(M019)	ppm	0.3	0.2	0.3	0.2	0.1	0.1	0.1	0.1	<0.1	0.1
Silver	(M019)	ppm	0.4	0.4	0.3	0.4	<0.1	<0.1	<0.1	0.1	0.1	0.2
Vanadium	(M019)	ppm	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	(M019)	ppm	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Silicon	(M019)	ppm	<1	<1	<1	<1	<1	<1	<1	<1	<1	4
Magnesium	(M019)	ppm	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tungsten	(M019)	ppm	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	(M019)	ppm	0.3	0.2	0.1	0.1	0.2	0.2	0.1	0.3	0.1	0.1
		-	-									
pinions and interpretati e validity of this report aution, this is an extract	CARE ions included in this may depend on the from the complete boratory reference cordance with in ho	s report are outsi e accuracy of the test results. may contain a di use documented	de the scope of l sample data sup fferent selection i methods.	JKAS accreditation plied. of tests.	on. Key	early warning	§ supp	plied by custome UKAS/SAS accres	er S dited s	PPROVED BY: IATTHEW MCL ENIOR LABORA	EAN TORY TECHNI od Place Farnh	CIAN ham Road

23-Jul-19 23-Jul-19 13-Jul-19	ul-19 ul-19 Purchase/Works Order # § ul-19				t Information n § Irer § Irer § Reference § de	ADVANCED WARNIN				
n in the high	lighted (**) :	size ranges.								
	1	2	3	4	5 **	6	7	8 •	9	10 +•
	26-Jun-13	29-Jan-15	17-Feb-15	21-Apr-15	22-Sep-16	03-Oct-16	06-Mar-18	26-Jun-19	23-Jul-19	23-Jul-19
	11-Jun-13	21-Jan-15	03-Feb-15	10-Apr-15	12-Sep-16	28-Sep-16	28-Feb-18	18-Jun-19	13-Jul-19	13-Jul-19
	111048560	111052946		1105358/	111057782	11102/300	1110646/1	111009320	111009008	111009009
	SV211402F	SV2125907	SV2126121	SV2127770	SV2142644	SV2142091	SV2158966			
	4	9	8	5	1	7	5			
cSt	7.5	6.8	6.7	7.1	6.6	6.7	6.7	6.8	7.5	7.5
kg/l	-	-		-	-	-	-	1.002	0.996	0.996
% weight	0.2300	0.2671	0.3130	0.3168	0.1886	0.3695	0.2469	0.2027	0.2761	0.2718
mg KOH/g	0.41	1.30	1.13	0.83	0.28	1.09	1.35	1.69 *	0.38	0.40
µS/cm	0.97	0.64	0.60	1.00	0.72	0.67	0.63	0.66	1.20	1.21
units	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
	Cical	Cical	Cical	Cical	cicar	Cicar	Cical	Cical	Cical	Cical
per 100ml	_	•	39000	837	289984 **	28991	10102	3525	24943	924614 **
Class		-	8	2	6927	7	6	4	7	12 **
Class			7	2	8	6	5	3	5	11 **
per 100ml		-	1079	59	1123	327	422	56	209	16746 **
Class		-	8	3	8	6	6	3	5	12 **
per 100ml		-	21	22	364	106	67	16	24	1917 **
Class		-	4	4	9	7	6	4	5	11 **
per 100ml	_	•	0	3	236 *	62	22	3	3	408 **
Class	-	-		4	10 +	0	,	4	4	
Class		-	8	4	11 **	8	7	4	7	12 **
ppm					-	-	<15	<15	<15	<15
report are outsi accuracy of the test results. nay contain a di se documented Manager. arks and are usi HAIRBUS A320-	ide the scope of e sample data su ifferent selectior d methods. ed under licence 232-53759.pdf	UKAS accreditati pplied. n of tests. • by Spectro Oil A	ion. Key • •• NG and Jet-Care II	early warning advanced war nternational Inc.	§ supµ ning N/A not Copyright © Pala	olied by custome UKAS/SAS accre ace Internationa	er Sł sdited Sł o sł Ltd. 2019 W	PPROVED BY: IATTHEW MCL ENIOR LABORA diham RG29 1A + 44 (0) 1256 70	EAN NTORY TECHN NO Place Farm IB UK 14000 Nil.com	ICIAN ham Road Page 1/1

SPECTRO

Odiham | Hampshire | UK T +44 (0) 1256 704000 enquiries@spectro-oil.com

JET-CARE Cedar Knolls | NJ | USA T +1 973 292 9597 inquiries@jet-care.com

SPECTRO OIL AG Kaiseraugst | Switzerland T + 41 (0) 61 815 90 20 enquiries@spectro-oil.com

spectro-oil.com | jet-care.com

'Spectro' and 'Jet-Care' are registered trademarks and used under licence by Spectro Oil AG and Jet-Care International Inc. Copyright © Palace International Ltd. 2022

SPECTRO[®] JET-CARE[®]